
Security Requirements Engineering 1
ID: 243-BSI | Version: 26 | Date: 9/30/09 3:22:45 PM

Security Requirements Engineering
Nancy R. Mead, Software Engineering Institute [vita3]

Copyright © 2006, 2008 Carnegie Mellon University

2006-08-10; Updated 2008-09-09 E, L, M4

When security requirements are considered at all during the system life cycle, they tend to be general lists of
security features such as password protection, firewalls, virus detection tools, and the like. These are, in fact,
not security requirements at all but rather implementation mechanisms that are intended to satisfy unstated
requirements, such as authenticated access. As a result, security requirements that are specific to the system
and that provide for protection of essential services and assets are often neglected. In addition, the attacker
perspective is not considered, with the result that security requirements, when they exist, are likely to be
incomplete. We believe that a systematic approach to security requirements engineering will help to avoid
the problem of generic lists of features and to take into account the attacker perspective. Several approaches
to security requirements engineering are described here and references are provided for additional material
that can help you ensure that your products effectively meet security requirements.

Related Links
• Comprehensive, Lightweight Application Security Process (CLASP7)

• System Quality Requirements Engineering (SQUARE8)

• Core security requirements artefacts9

• Misuse/abuse cases10 and process diagram11

• REVEAL12

• Software Cost Reduction (SCR13)

• Common Criteria14

• Requirements Elicitation Introduction15

• Requirements Elicitation Case Studies Using Selected Methods16

• Requirements Prioritization Introduction17

• Requirements Prioritization Case Study Using AHP18

• Using Integer Programming to Optimize Investments in Security Countermeasures19

• Bibliography20 for requirements engineering

The Importance of Requirements Engineering
It comes as no surprise that requirements engineering is critical to the success of any major development
project. Some studies have shown that requirements engineering defects cost 10 to 200 times as much to

correct once fielded than if they were detected during requirements development [Boehm 8822, McConnell

0123]. Other studies have shown that reworking requirements, design, and code defects on most software

development projects costs 40 to 50 percent of total project effort [Jones 8624], and the percentage of defects
originating during requirements engineering is estimated at more than 50 percent. The total percentage of

project budget due to requirements defects is 25 to 40 percent [Wiegers 0325].

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/230-BSI.html (Mead, Nancy)
22. #dsy243-BSI_boe88
23. #dsy243-BSI_mcc01
24. #dsy243-BSI_jon86
25. #dsy243-BSI_wie03

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/230-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/548-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/232-BSI.html
http://computing-reports.open.ac.uk/2004/2004_23.pdf
http://buildsecurityin.us-cert.gov/bsi/resources/articles/series/bsi-ieee/125-BSI.html
http://buildsecurityin.us-cert.gov/bsi/475-BSI.html
http://www.praxis-his.com/reveal/index.htm
http://www.softwaretechnews.com/stn3-4/scr.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/239-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/533-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/532-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/545-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/534-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/552-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/231-BSI.html
#dsy243-BSI_boe88
#dsy243-BSI_mcc01
#dsy243-BSI_mcc01
#dsy243-BSI_jon86
#dsy243-BSI_wie03

Security Requirements Engineering 2
ID: 243-BSI | Version: 26 | Date: 9/30/09 3:22:45 PM

A prior study found that the return on investment when security analysis and secure engineering practices
are introduced early in the development cycle ranges from 12 to 21 percent, with the highest rate of return

occurring when the analysis is performed during application design [Berinato 0226]. The National Institute
of Standards and Technology (NIST) reports that software that is faulty in security and reliability costs

the economy $59.5 billion annually in breakdowns and repairs [NIST 0227]. The costs of poor security
requirements show that even a small improvement in this area would provide a high value. By the time that
an application is fielded and in its operational environment, it is very difficult and expensive to significantly
improve its security.

Requirements problems are among the top causes [Charette 0528] of why

• projects are significantly over budget

• projects are past schedule

• projects are significantly reduced in scope or are cancelled

• development teams deliver poor-quality applications

• products are not significantly used once delivered

These days we have the further problem that the environment in which we do requirements engineering
has changed, resulting in an added element of complexity. Software development occurs in a dynamic
environment that changes while projects are still in development, with the result that requirements are in flux
from the beginning. This can be due to conflicts between stakeholder groups, rapidly evolving markets, the
impact of tradeoff decisions, and so on.

In addition, requirements engineering on individual projects often suffers from the following problems:

• Requirements identification typically does not include all relevant stakeholders and does not use the
most modern or efficient techniques.

• Requirements are often statements describing architectural constraints or implementation mechanisms
rather than statements describing what the system must do.

• Requirements are often directly specified without any analysis or modeling. When analysis is
done, it is usually restricted to functional end -user requirements, ignoring (a) quality requirements
such as security, (b) other functional and nonfunctional requirements, and (c) architecture, design,
implementation, and testing constraints.

• Requirements specification is typically haphazard, with specified requirements being ambiguous,
incomplete (e.g., nonfunctional requirements are often missing), inconsistent, not cohesive, infeasible,
obsolete, neither testable nor capable of being validated, and not usable by all of their intended
audiences.

• Requirements management is typically weak, with ineffective forms of data capture (e.g., in one
or more documents rather than in a database or tool) and missing attributes. It is often limited to
tracing, scheduling, and prioritization, without change tracking or other configuration management.
Alternatively, it may be limited to the capabilities provided by a specific tool, with little opportunity for
improvement.

Quality Requirements
Even when organizations recognize the importance of functional end-user requirements, they often still
neglect quality requirements, such as performance, safety, security, reliability, and maintainability. Some
quality requirements are nonfunctional requirements, but others describe system functionality, even though it
may not contribute directly to end-user requirements.

As you might expect, developers of certain kinds of mission-critical systems and systems in which human
life is involved, such as the space shuttle, have long recognized the importance of quality requirements and

26. #dsy243-BSI_ber02
27. #dsy243-BSI_nis02
28. #dsy243-BSI_cha05

#dsy243-BSI_ber02
#dsy243-BSI_nis02
#dsy243-BSI_cha05

Security Requirements Engineering 3
ID: 243-BSI | Version: 26 | Date: 9/30/09 3:22:45 PM

have accounted for them in software development. In many other systems, however, quality requirements
are ignored altogether or treated in an inadequate way. Hence we see the failure of software associated with
power systems, telephone systems, unmanned spacecraft, and so on. If quality requirements are not attended
to in these types of systems, it is far less likely that they will be focused on in ordinary business systems.

This inattention to quality requirements is exacerbated by the desire to keep costs down and meet aggressive
schedules. As a consequence, software development contracts often do not contain specific quality
requirements but rather some vague generalities about quality, if anything at all.

Security Requirements Engineering
If security requirements are not effectively defined, the resulting system cannot be evaluated for success or

failure prior to implementation. (See the Risk Management30 content area.) When security requirements are
considered, they are often developed independently of other requirements engineering activities. As a result,
specific security requirements are often neglected, and functional requirements are specified in blissful
ignorance of security aspects.

In reviewing requirements documents, we typically find that security requirements, when they exist, are
in a section by themselves and have been copied from a generic list of security features. The requirements
elicitation and analysis that are needed to get a better set of security requirements seldom take place.

As noted previously, operational environments and business goals often change dynamically, with the
result that security requirements development is not a one-time activity. Therefore the activities that we will
describe should be planned as iterative activities, as change occurs. Although we describe them as one-time
activities for the sake of exposition, you can expect mini life cycles to occur over the course of a project.
Much requirements engineering research and practice addresses the capabilities that the system will provide.
So a lot of attention is given to the functionality of the system, from the user’s perspective, but little attention

is given to what the system should not do [Bishop 0233]. Users have implicit assumptions for the software
applications and systems that they use. They expect them to be secure and are surprised when they are not.
These user assumptions need to be translated into security requirements for the software systems when they
are under development. Often the implicit assumptions of users are overlooked and features are focused on
instead.

Another important perspective is that of the attacker. The attacker is not particularly interested in functional
features of the system, unless they provide an avenue for attack. The attacker typically looks for defects
and other conditions outside the norm that will allow a successful attack to take place. It’s important
for requirements engineers to think about the attacker’s perspective and not just the functionality of the
system from the end-user’s perspective. The discussion of attack patterns in Chapter 2 of Software Security

Engineering: A Guide for Project Managers [Allen 0834] provides a good place to start this analysis.
Other techniques that can be used in defining the attacker’s perspective are misuse and abuse cases, attack

trees [Ellison 0335, Schneier 0036], and threat modeling. Security requirements are often stated as negative
requirements. As a result, general security requirements, such as “The system shall not allow successful
attacks,” are usually not feasible, as there is no consensus on ways to validate them other than to apply
formal methods to the entire system. We can, however, identify the essential services and assets that must
be protected. Operational usage scenarios can be extremely helpful aids to understanding which services
and assets are essential. By providing threads that trace through the system, operational usage scenarios also
help to highlight security requirements, as well as other quality requirements such as safety and performance

[Reifer 0337]. Once the essential services and assets are understood, we are able to validate that mechanisms
such as access control, levels of security, backups, replication, and policy are implemented and enforced. We

30. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/risk.html (Risk Management)
33. #dsy243-BSI_bis02
34. #dsy243-BSI_allen08
35. #dsy243-BSI_ellison03
36. #dsy243-BSI_schneier00
37. #dsy243-BSI_reifer03

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/risk.html
#dsy243-BSI_bis02
#dsy243-BSI_allen08
#dsy243-BSI_ellison03
#dsy243-BSI_schneier00
#dsy243-BSI_reifer03

Security Requirements Engineering 4
ID: 243-BSI | Version: 26 | Date: 9/30/09 3:22:45 PM

can also validate that the system properly handles specific threats identified by a threat model and correctly
responds to intrusion scenarios.

A discussion of the importance of security requirements engineering can be found at [Mead 0838].

Methods and Techniques
As usable approaches to security requirements engineering continue to be developed and mechanisms are
identified to promote organizational use, project managers can do a better job of ensuring that the resulting
product effectively meets security requirements. Some useful techniques include

• Comprehensive, Lightweight Application Security Process (CLASP39) approach to security
requirements engineering. CLASP is a life-cycle process that suggests a number of different activities
across the development life cycle in order to improve security. Among these is a specific approach for
security requirements.

• System Quality Requirements Engineering (SQUARE40). This is a process aimed specifically at security
requirements engineering.

• Core security requirements artefacts41. This approach takes an artifact view and starts with the artifacts
that are needed to achieve better security requirements. It provides a framework that includes both
traditional requirements engineering approaches to functional requirements and an approach to security
requirements engineering that focuses on assets and harm to those assets.

Some other useful techniques are formal specification approaches to security requirements, such as

REVEAL42 and Software Cost Reduction (SCR43), and the higher levels of the Common Criteria44.

As an additional reference, the SOAR report Software Security Assurance [Goertzel 0745] contains a good
discussion of SDLC processes and various approaches to security requirements engineering.

In this content area we discuss several approaches, including misuse and abuse cases46 [process diagram47],

SQUARE, elicitation48 and associated case studies49, and prioritization50 and an associated case study51.

Another article discusses the use of integer programming for optimizing investment52 in implementation of
security requirements elicitation and security requirements prioritization. While the processes we discuss
are similar to those used for requirements engineering in general, we have found that when we get into
the detailed steps of how to do security requirements engineering, there are specific techniques that are
particularly useful, and we highlight these where they occur. We list local references. A more comprehensive

bibliography53 is also included for this topic.

38. #dsy243-BSI_mead08
42. http://www.praxis-his.com/reveal/index.htm
43. http://www.softwaretechnews.com/stn3-4/scr.html
44. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/239-BSI.html (The Common Criteria)
45. #dsy243-BSI_goertzel07
46. http://buildsecurityin.us-cert.gov/bsi/resources/articles/series/bsi-ieee/125-BSI.html (Misuse and Abuse Cases: Getting Past the

Positive)
47. http://buildsecurityin.us-cert.gov/bsi/245-BSI.html
48. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/533-BSI.html (Requirements Elicitation Introduction)
49. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/532-BSI.html (Requirements Elicitation Case Studies

Using IBIS, JAD, and ARM)
50. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/545-BSI.html (Requirements Prioritization

Introduction)
51. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/534-BSI.html (Requirements Prioritization Case Study

Using AHP)
52. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/552-BSI.html (Optimizing Investments in Security

Countermeasures: A Practical Tool for Fixed Budgets)
53. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/231-BSI.html (Requirements Engineering Annotated

Bibliography)

#dsy243-BSI_mead08
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/548-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/232-BSI.html
http://computing-reports.open.ac.uk/2004/2004_23.pdf
http://www.praxis-his.com/reveal/index.htm
http://www.softwaretechnews.com/stn3-4/scr.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/239-BSI.html
#dsy243-BSI_goertzel07
http://buildsecurityin.us-cert.gov/bsi/resources/articles/series/bsi-ieee/125-BSI.html
http://buildsecurityin.us-cert.gov/bsi/245-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/533-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/532-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/545-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/534-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/552-BSI.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/231-BSI.html

Security Requirements Engineering 5
ID: 243-BSI | Version: 26 | Date: 9/30/09 3:22:45 PM

Although much work remains to be done, organizations can significantly improve the security of their
systems by utilizing a systematic approach to security requirements engineering. The methods described here
can help in this task.

Maturity of Practices
The techniques described have all had successful pilots and prototypes. SCR, REVEAL, and Common
Criteria are mature practices.

Business Case Rationale
Although data exists to support the benefit of requirements engineering in general, the data to specifically
support the benefits of security requirements engineering is anecdotal. The discussion of integer
programming for prioritizing investments in security requirements is one such example. Organizations that
systematically develop security requirements see benefit from this activity, but it is not yet quantified in
terms of return on investment. We hope that in the future more supporting data will be amassed and made
available to support this important activity. Discussion of a broader business case development model should

be helpful to those striving to develop specific business cases. (See Business Case Models58.)

References

[Allen 08] Allen, J. H., Barnum, S., Ellison, R. J., McGraw,
G., & Mead, N. R. Software Security Engineering: A
Guide for Project Managers. Boston, MA: Addison-
Wesley, 2008.

[Berinato 02] Berinato, Scott. “Finally, a Real Return on Security

Spending60.” CIO, April 8, 2002.

[Bishop 02] Bishop, Matt. Computer Security: Art and Science.
Boston, MA: Addison-Wesley Professional, 2002.

[Boehm 88] Boehm, Barry W. & Papaccio, Philip N.
“Understanding and Controlling Software Costs.
IEEE Transactions on Software Engineering 14, 10
(October 1988): 1462-1477.

[Charette 05] Charette, R. N. “Why Software Fails.” IEEE
Spectrum 42, 9 (September 2005): 42-29.

[Ellison 03] Ellison, Robert J. & Moore, Andrew. P. Trustworthy

Refinement Through Intrusion-Aware Design61

(CMU/SEI-2003-TR-002, ADA414865). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon
University, 2003.

[Goertzel 07] Goertzel, Karen Mercedes; Winograd, Theodore;
McKinley, Holly Lynne; Oh, Lyndon; Colon,
Michael; McGibbon, Thomas; Fedchak, Elaine; &
Vienneau, Robert. Software Security Assurance: A

State-of-the-Art Report62 (SOAR). Herndon, VA:
Information Assurance Technology Analysis Center
(IATAC) and Defense Technical Information Center
(DTIC), 2007.

58. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/business.html (Business Case Models)

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/business.html
http://www.cio.com.au/index.php/id;557330171;fp;;fpid;;pf;1
http://www.cio.com.au/index.php/id;557330171;fp;;fpid;;pf;1
http://www.sei.cmu.edu/publications/documents/03.reports/03tr002.html
http://www.sei.cmu.edu/publications/documents/03.reports/03tr002.html
http://iac.dtic.mil/iatac/download/security.pdf
http://iac.dtic.mil/iatac/download/security.pdf

Security Requirements Engineering 6
ID: 243-BSI | Version: 26 | Date: 9/30/09 3:22:45 PM

[Jones 86] Jones, Capers, ed. Tutorial: Programming
Productivity: Issues for the Eighties, 2nd Ed. Los
Angeles: IEEE Computer Society Press, 1986.

[Linger 98] Linger, R. C.; Mead, N. R.; & Lipson, H. F.
"Requirements Definition for Survivable Systems,"
14-23. Third International Conference on
Requirements Engineering. Colorado Springs,
CO, April 6-10, 1998. Los Alamitos, CA: IEEE
Computer Society, 1998.

[McConnell 01] McConnell, Steve. “From the Editor - An Ounce of
Prevention.” IEEE Software 18, 3 (May 2001): 5-7.

[Mead 08] Mead, N. R. & Allen, J. H. "Identifying Software
Security Requirements Early, Not After the

Fact63" (audio). InformIT, 2008.

[Mead 03] Mead, N. R. Requirements Engineering for

Survivable Systems64 (CMU/SEI-2003-TN-013).
Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2003.

[NIST 02] National Institute of Standards and Technology.
"Software Errors Cost U.S. Economy $59.5 Billion

Annually65" (NIST 2002-10), 2002.

[Reifer 03] Reifer, D.; Boehm, B.; & Gangadharan, M.
“Estimating the Cost of Security for COTS
Software,” 178–186. Proceedings of the Second
International Conference on COTS-Based Software
Systems. Ottawa, Ontario, Canada, February 2003.
Springer, Lecture Notes in Computer Science, 2003.

[Schneier 00] Schneier, Bruce. Secrets and Lies: Digital Security
in a Networked World. New York, NY: John Wiley
& Sons, 2000.

[Wiegers 03] Wiegers, Karl E. Software Requirements. Redmond,
WA: Microsoft Press, 2003.

Carnegie Mellon Copyright
Copyright © Carnegie Mellon University 2005-2010.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY

1. mailto:permission@sei.cmu.edu

http://www.informit.com/podcasts/episode.aspx?e=f1c2fb35-295a-449f-964a-4a5b1af5b5ec
http://www.informit.com/podcasts/episode.aspx?e=f1c2fb35-295a-449f-964a-4a5b1af5b5ec
http://www.informit.com/podcasts/episode.aspx?e=f1c2fb35-295a-449f-964a-4a5b1af5b5ec
http://www.sei.cmu.edu/publications/documents/03.reports/03tn013.html
http://www.sei.cmu.edu/publications/documents/03.reports/03tn013.html
http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.nist.gov/public_affairs/releases/n02-10.htm
mailto:permission@sei.cmu.edu

Security Requirements Engineering 7
ID: 243-BSI | Version: 26 | Date: 9/30/09 3:22:45 PM

MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

